
Invertibility 

The inverse  of a  LTI sys tem, if such a  sys tem exis ts , is  a  LTI sys tem. 

Let h and hinv  denote  the  impulse  responses  of a  LTI sys tem and its  (LTI) 

inverse, respectively. Then, 
 
 

h ∗ hinv =  δ. 
 
 

Consequently, a  LTI sys tem with impulse  response  h is  invertible  if and 

only if there  exis ts  a  function hinv  such that 
 
 

h ∗ hinv =  δ. 
 

 

Except in s imple  cases, the  above condition is  often quite  difficult to tes t. 
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BIBO Stability 

A LTI sys tem with impulse  response  h is  BIBO s table  if and only if 

 { 

∞ 
−∞ 

|  h(t)| dt  < ∞  

(i.e., h is  absolutely integrable ).  
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Eigenfunctions  of Sys tems  

An input x to a  sys tem H is  said to be  an eigenfunction of the  sys tem H 
with the  eigenvalue λ if the  corresponding output y is  of the  form 
 
 

y =  λx, 
 
 

where  λ is  a  complex constant. 

In other words, the  sys tem H acts  as  an ideal amplifier for each of its  

e igenfunctions  x, where  the  amplifier gain is  given by the  corresponding 

eigenvalue  λ. 
 

Different sys tems have  different e igenfunctions. 
 

Of particular interes t are  the  e igenfunctions  of LTI sys tems. 
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Eigenfunctions  of LTI Sys tems  As it turns  out, every complex exponentia l is  an eigenfunction of a ll LTI 

sys tems. 

For a  LTI sys tem H with impulse  response  h, 
 

H { est }  =  H(s)est  , 
 
 

where  s is  a  complex constant and 

H(s ) = 
{  ∞ 

−∞  
 

That is , est  is  an eigenfunction of a  LTI sys tem and H(s) is  the  

corresponding eigenvalue. 
 

We refer to H as  the  system function (or transfer  function) of the  

sys tem H  .  

From above, we can see  that the  response  of a  LTI sys tem to a  complex 

exponentia l is  the  same complex exponentia l multiplied by the  complex 

factor H(s ).  

h(t)e−st dt. 
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Representa t ions  of S igna ls  Us ing Eigenfunctions  
Consider a  LTI sys tem with input x, output y, and sys tem function H . 

Suppose  that the  input x can be  expressed as  the  linear combination of 

complex exponentia ls  

x(t) =  ∑akeskt  , 
k 

where  the  ak  and sk  are  complex constants. 
 

Using the  fact that complex exponentia ls  are  e igenfunctions  of LTI 

sys tems, we can conclude  
 

y(t) =  ∑akH(sk)eskt  .  
k 

 

Thus, if an input to a  LTI sys tem can be  expressed as  a  linear combination of 

complex exponentia ls , the  output can also be  expressed as  a  linear 

combination of the  same complex exponentials. 
 

The above formula  can be  used to determine  the  output of a  LTI sys tem 

from its  input in a  way that does  not require  convolution. 
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Part 4 
 

 
 
 

Continuous -Time Fourier Series  (CTFS) 
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Introduction 

The Fourier series  is  a  representation for periodic s ignals. 
 

With a  Fourier series, a  s ignal is  represented as  a  linear combination of 

complex sinusoids. 
 

The use  of complex s inusoids  is  des irable  due  to their numerous  attractive  

properties. 
 

For example, complex s inusoids  are  continuous  and differentiable.  They 

are  a lso easy to integrate  and differentia te. 

Perhaps, most importantly, complex s inusoids  are  eigenfunctions of LTI 

sys tems. 
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Section 4.1 
 

 
 
 

Fourier Series  
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Harmonica lly-Rela t ed Complex S inusoids  

A set of complex s inusoids  is  said to be harmonically related if there  

exis ts  some constant ω0 such that the  fundamental frequency of each 

complex s inusoid is  an integer multiple  of ω 0.  
 

Consider the  set of harmonically-related complex s inusoids  given by 

φk(t) =  e jkω0t for a ll integer k. 

The fundamental frequency of the  kth complex s inusoid φk  is  kω0, an 

integer multiple  of ω0. 
 

Since  the  fundamental frequency of each of the  harmonically-related 

complex s inusoids  is  an integer multiple  of ω0, a  linear combination of 

these  complex s inusoids  must be  periodic. 
 

More specifically, a  linear combination of these  complex s inusoids  is  

periodic with period T =  2π/ ω0. 
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CT Fourie r  Series  
A periodic complex s ignal x with fundamental period T and fundamental 

frequency ω0 =  2π  can be  represented as  a  linear combination of T 

harmonically-related complex s inusoids  as  
 

∞ 

x(t) =  ∑ 
k =−∞  

 

Such a  representation is  known as  (the complex exponentia l form of) a  

(CT) Four ier  ser ies, and the  ck  are  called Four ier  ser ies coefficients. 

The above formula  for x is  often referred to as  the  Four ier  ser ies 

synthesis equation. 
 

The terms in the  summation for k =  K and k =  −K are  called the  Kth 

harmonic components, and have  the  fundamental frequency Kω 0.  

To denote  that a  s ignal x has  the  Fourier series  coefficient sequence  ck, 

we write  

cke jkω0t . 

x(t) ←→ ck. 
CTFS 
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CT Fourie r  Series  (Continued) 

The periodic s ignal x with fundamental period T and fundamental 

frequency ω0 =  2π  has  the  Fourier series  coefficients  ck  given by T 

ck =  
T T 

x(t)e dt, 
1 

{  
− jkω0t 

where  
{

T  denotes  integration over an arbitrary interval of length T (i.e., 

one  period of x). 
 

The above equation for ck  is  often referred to as  the  Four ier  ser ies 

analysis equation. 
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Trigonomet ric Forms  of a  Fourie r  Series  Consider the periodic s ignal x with the Fourier series  coefficients  ck. If 

x is  real, then its  Fourier series  can be rewritten in two other forms, 

known as  the  combined trigonometric and trigonometric forms. 

The combined tr igonometr ic form of a  Fourier series  has  the  

appearance  
 

∞ 

x(t) =  c0 +  2 ∑ |ck| cos(kω0t +  θk), 
k= 1 

 

where  θk =  arg ck. 
 

The tr igonometr ic form of a  Fourier series  has  the  appearance  
 

∞ 

x(t) =  c0 +  ∑ [αk cos kω0t +  βk sin kω0t] , 
k= 1 

 

where  αk =  2 Re ck  and βk =  −2 Im ck. 
 

Note  that the  trigonometric forms contain only real quantities. 
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Section 4.2 
 

 
 
 

Convergence  Properties  of Fourier Series  
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Convergence  of Fourie r  Series  Since  a  Fourier series  can have  an infinite  number of terms, and an 

infinite  sum may or may not converge, we need to consider the  issue  of 

convergence. 

That is , when we claim that a  periodic s ignal x(t) is  equal to the  Fourier 

series  ∑∞ cke jkω0t , is  this  cla im actually correct?  k= −∞ 

Consider a  periodic s ignal x that we wish to represent with the  Fourier 

series  

∞ 

∑ 
k =−∞  

Let xN  denote  the  Fourier series  truncated after the  Nth harmonic 

components  as  given by 
 

N 

cke jkω0t  .  

xN (t ) =  ∑ 
k= −N 

 

Here, we are  interes ted in whether limN→∞ xN (t) is  equal (in some sense) to 

x(t ).  

cke jkω0t  .  
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Convergence  of Fourie r  Series  (Continued) The error in approximating x(t) by xN (t) is  given by 
 

eN (t) =  x(t) − xN (t), 
 

and the  corresponding mean-squared error (MSE) (i.e., energy of the  

error) is  given by 

EN  =  
T T 

|eN (t)| dt. 
 
 

If limN→∞ eN (t) =  0 for a ll t (i.e., the  error goes  to zero at every point), the  

Fourier series  is  said to converge  pointwise to x(t ).  

If convergence  is  pointwise  and the  rate  of convergence  is  the  same 

everywhere, the  convergence  is  said to be  uniform. 

If limN→∞ EN  =  0 (i.e., the  energy of the  error goes  to zero), the  Fourier 

series  is  said to converge  to x in the  MSE sense. 

Pointwise  convergence implies  MSE convergence, but the converse  is  not 

true. Thus, pointwise  convergence  is  a  much s tronger condition than MSE 

convergence. 

1 
{  

2 
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